Advisory Committee Fall 2021 Agenda Automation and Electrical Technology

11:30 am - October 28, 2021 - Vernon College Skills Training Center, room 400

Members present:

Kyle Stewart – Plains Pipeline Ken Theimer – Evans Enterprises Randy Brooks – Solvay Dakota Patterson – NexEra Energy Kelly Easter – Vitro Gordon Drake – Oncor

Vernon College staff/faculty:

Dr. Mark Holcomb Debbie Richard Holly Scheller Delilah Fowler Colleen Moore Shana Drury Harli Adams

Members not present:

Casey McShan

Dr. Mark Holcomb welcomed the committee members and began introductions. Shana Drury reviewed the purpose of the advisory committee then Shana opened the floor for nominations or volunteers for vice-chair and recorder.

> Chair: Dakota Patterson Vice-chair: Gordon Drake Recorder: Ken Theimer

Old Business/Continuing Business......Dakota Patterson

None

New Business Dakota Patterson

* <u>Review program outcomes, assessment methods/results, and workplace competency</u>

Dakota Patterson asked the faculty member, Dr. Mark Holcomb, to review the program outcomes listed below with the committee. Dr. Mark Holcomb reviewed the information with the committee.

Program outcomes

- 1. Apply basic AC/DC electrical and electronic fundamentals to wire, integrate, and troubleshoot electrical devices and systems. Devices used in industrial environments to increase the efficiency of production.
- 2. Incorporate local, state, and federal safety requirements and guidelines in the design of electrical systems. Automate different manufacture processes.
- 3. Interpret schematics and wiring diagrams and recognize the sequence of operations occurring in automated electrical systems.
- 4. Develop programs, calibrate devices, and tune PID parameters for various types of process control systems, including such as pressure, level, flow, and temperature control systems.
- 5. Calculate requirements of electrical systems utilized in commercial, industrial, and high voltage distribution and transmission applications.

6. Design, program, integrate, and troubleshoot automation control devices such as PLC (Programmable Logic Controllers), PID (Proportional Integral Derivative) Controllers, and PAC (Programmable Automation Controllers).

Dakota Patterson opened the floor for discussion.

* <u>Approve program outcomes</u>

Dakota Patterson asked the committee for a motion to approve the program outcomes as presented. Randy Brooks made a motion to approve the program outcomes as presented. Ken Theimer seconded the motion.

The motion passed and the committee approved the program outcomes as presented.

* Approve assessment methods and results

Dakota Patterson asked the faculty member, Dr. Mark Holcomb, to explain in more detail the assessment methods and results listed below.

Dr. Mark Holcomb reviewed the information below with the committee.

INDUSTR	RIAL AUTOMATION SYSTEMS CAPSTONE EXPERIENCE GRADING RUBRIC
STUDENT	:STUDENT ID:

Topic	Target = 5 Acceptable = 4 Borderline = 3 Unacceptable = 2 Incomplete = 1	5	4	3	2	1
Resume	The resume was clear, concise, and fully descriptive of the student's attributes?					
Programmable Logic (Automation) Control	The student will perform the 3 tasks to demonstrate knowledge on the circuit construction reading program to feature advanced programming on Allen-Bradley Compact Logic Controller to assess learning in automated controls. (PO1, PO3, PO5,)					
Task One: Wiring	Did the wiring meet operational and quality standards set by the instructor? (Able to integrate Mechanical devices, solid-state devices, and various loads (outputs) correctly)					
Task Two: Programming	Did the programming meet the scenario as described in the capstone project?					
Task Three: Editing Program	Did the programmer edit the program to allow easy understanding to non-technical observers?					
Task Three: PID Control	Did the student follow assignment instructions properly and complete all tasking for adjustment of the PID loop?					
Task four: Adjustable Frequency Drive	Using an Allen-Bradley Flex 40, students will develop an operational program that utilizes Scaled parameter Analog signal Control. (PO1, PO3, PO4, PO5)					
Task Five: Wiring	Was wiring completed with meeting Quality standards and functioning properly?					

Task Two: Advanced Parameter Setting	Were all parameters programmed correctly so drive integrated properly with PLC to perform tasks?			
Motor Control Troubleshooting	Following proper safety procedures, students will use the schematic wiring diagram and digital Multi-meter to locate the fault. (PO1, PO3, PO4, PO5)			
Task One: Fault One	Did the student use a systematic approach and locate the fault in the control circuit?			
Task Two: Fault Two	Did the student use a systematic approach and locate the fault in the control circuit?			
Task Three: Fault Three	Did the student use a systematic approach and locate the fault in the control circuit?			
Task Four: Fault Four	Did the student use a systematic approach and locate the fault in the control circuit?			
Electrical Design Calculation	Students calculated per National Electric Code (NEC) sizing of conductor, overcurrent protection, and overload protection for motor circuit. (PO1, PO2, PO3, PO5)			
Using Solidworks, Design a feeder circuit for 3 motors				
Task one: One line diagram	The student created a one wiring diagram detailing the motors connections as per the calculated values from the Electrical Design using Solidworks Electrical Drawing Software. (Sketches used instead of Solidworks)			
Task two: Construct control circuits	The student created a motor control circuit as instructed in the assigned Scenario using Solidwork Electrical Drawing software.			
Task three: Advanced Electrical calculations	The student provided advanced calculations for adjusted Power Correction Factor, Short Circuit Analysis rating at instructor-selected locations.			
Task four:	The student will be evaluated using results of midterm and final exam from ELPT 2443, Electrical Systems Design			I
	Instructor Notes:			
Total (80)		\square		

MASTERY OF PROGRAM CONTENT:80 to 76PROFICIENT AT PROGRAM CONTENT:75 to 70COMPETANT AT PROGRAM CONTENT:69 to 64UNSATISFACTORY SCORE:Below 64

Dakota Patterson asked for a motion to approve the assessment methods as presented. Ken Theimer made a motion to approve the assessment methods as presented. Kyle Stewart seconded the motion.

The motion passed and the committee approved the assessment methods as presented.

✤ <u>Approval of workplace competency (course or exam)</u>

Ken Theimer asked the faculty member, Dr. Mark Holcomb, to tell the committee about the competency and how the students have performed. Dr. Mark Holcomb reviewed the information in the table with the committee.

Verification of workplace competencies:

Level 1 Certificate: ELPT 2443 – Electrical Systems Design

A.A.S: ELPT 2443 - Electrical Systems Design

Program Outcome	Number of students who took course or licensure exam	Results per student	Use of results
1.	8	2 – Mastery 6 – competent	Stronger integration exercises and lab
2.	8	2– Mastery 6 – Proficient	No Action
3.	8	2 – Mastery 6– Proficient	Incorporate Solidworks Electrical into the program
4.	8	2– Mastery 3 – Proficient 3-Competent	More instrumentation exercises and labs
5.	8	2 – Mastery 6 – Proficient	Added TECM 1303 to strengthen Math skills
6,	8	2 – Mastery 3 – Proficient 3- Unacceptable	Add Siemens S7-1513 into Training (ELPT 2449)

ELPT 2449 - Industrial Automation

Dakota Patterson opened the floor for discussion.

Hearing none, Dakota asked the committee for a motion to approve the workplace competency as presented.

Kelly Easter made a motion to approve the workplace competency as presented. Gordon Drake seconded the motion.

The motion passed and the committee approved the workplace competency as presented.

Review program curriculum/courses/degree plans

Dakota Patterson asked the faculty member, Dr. Mark Holcomb, to discuss the program's curriculum and degree plans for 2022-2023.

Automation and Electrical Technology, Level 1 Certificate

CIP 46.0301

Instructional Location - Skills Training Center **CERTIFICATE OF COMPLETION** (Probable Completion Time – 9 months or 32 weeks)

Total Credit Hours:

Polatod	Poquiromonte	11	сп)
Relateu	Requirements	(1)	ЗΠ)

LEAD 1100	Workforce Development with Critical Thinking	1
Major Require	ments (26 SH)	
ELPT 1411 or	Basic Electrical Theory (A)	4
HART 1401	Basic Electricity for HVAC	
ELPT 1441	Motor Control	4
ELPT 2339	Electrical Power Distribution	3
ELPT 2419	Programmable Logic Controllers I	4
ELPT 2443	Electrical Systems Design	4
RBTC 1405	Robotic Fundamentals	4
TECM 1303 or	Technical Calculations	3
ITNW 1325	Fundamentals of Networking	

27

Automation and Electrical Technology,

A.A.S.

CIP 46.0301

Instructional Location – Skills Training Center **ASSOCIATE IN APPLIED SCIENCE DEGREE** (Probable Completion Time - 2 years)

General	Education	Requirements	(15	SH)

ECON 2301	Principles of Macroeconomics	3
ENGL 1301	Composition I	3
GOVT 2305	Federal Government (Federal Constitution and Topics)	3
MATH 1332 or	Contemporary Mathematics	3
PHYS 1415	Physical Science I	
SPCH 1315	Public Speaking	3

Related Requirements (1 SH)

LEAD 1100	Workforce Development with Critical Thinking	1
-----------	--	---

Major Requirements (44 SH)

ELPT 1411 or	Basic Electrical Theory (A)	4
HART 1401	Basic Electricity for HVAC	
TECM 1303 or	Technical Calculations	3
ITNW 1325	Fundamentals of Networking	
CBFM 2317	Mechanical Maintenance	3
ELMT 2433	Industrial Electronics	4
ELPT 1441	Motor Control	4
ELPT 1457	Industrial Wiring	4
ELPT 2339	Electrical Power Distribution	3
ELPT 2355 or	Programmable Logic Controllers II	3
EEIR 2366	Practicum (or Field Experience) - Electrical/Electronics Equipment Installation and Repairer, General	

ELPT 2419	Programmable Logic Controllers I	4
ELPT 2443	Electrical Systems Design	4
ELPT 2449	Industrial Automation	4
RBTC 1405	Robotic Fundamentals	4
	Total Credit Hours:	60

<u>ELPT 1411</u>, <u>ELPT 1457</u>: Apprentice Credit - Credit will be awarded for these courses to individuals who have completed an electrical apprenticeship program.

(A) Course included on the State's Advanced Technical Credit list. (See Advanced Technical Credit.)

National Institute for Metalworking Skills (NIMS) credential. The student will be able to pick between Electrical Controls, Electrical Systems, or Process Controls credentials. This would be added to ELPT 2443 Electrical Systems Design and the testing fee of \$80 will be added to the course. This allows students to use financial aid to pay for the credentialing test.

Ken Theimer asked if Dr. Mark Holcomb would look into NETA credentials. Dakota Patterson stated that in the wind energy business, they see the NETA certification more often.

The committee asked that Dr. Holcomb review NETA vs NIMS credentialing. After researching NETA requirements, students would have to qualify for Level 1 (6 months of work experience) before they could take the Level 2 credential. Not every student will qualify for Level 1 therefore, VC believes that it is in the best interest of the student to stay with the National Institute for Metalworking Skills (NIMS) credential as stated above.

This was sent to the committee via email electronic vote and there were 6 of 7 approvals.

Course descriptions and learning outcomes are provided as a separate document.

* Approve program revisions (if applicable)

Dakota Patterson asked the committee for a motion to approve the program revisions as updated. Ken Theimer made a motion to approve the program revisions as presented. Randy Brooks seconded the motion.

The motion has been approved and the program revisions have been approved as presented.

Approve 2021-2022 SCANS, General Education, Program Outcomes, and Institutional <u>Outcome Matrices</u>

Dakota Patterson asked the committee to review the following matrices with the committee. Dr. Mark Holcomb reviewed the information on the matrices listed below.

SCANS Matrix: The SCANS (Secretary's Commission on Achieving Necessary Skills) Matrix represents the 8 Federal requirements that must be taught. The matrix shows how we are mapping them back to each of the courses in the program.

Program: Industrial Automation Systems					ial /	Auto	oma	tion Systems					
Av	varc	d: In	dus	trial	Au	tom	atio	n Systems Associate in	Credential: Associate in Applied Science (AAS)				
Ap	plie	ed So	cien	ce (AAS	5) De	egre	e	Degree				
Ci	Cip: 15.0303												
					LI	ST (OF A	LL COURSES REQUIRED A	ND IDENTIFIED COMPETENCIES				
:	SCA	NS (CON	/IPE	TEN	CIE	S	Course Number	Course Title				
1	2	3	4	5	6	7	8	Course Number	Course ritle				
Х	Х		Х	Х	Х	Х		Lead 1100*	Workforce Development with Critical Thinking				
Х			Х	Х		Х	Х	ITNW 1325*	Fundamentals of Networking Technologies				
Х			Х	Х		Х		ELPT 1411* Or	Basic Electrical Theory				
Х			Х	Х		Х		HART 1401*	Basic Electricity for HVAC				
Х			Х	Х		Х		ELPT 1441*	Motor Control				
Х		Х	Х	Х	Х	Х		ELPT 1457	Industrial Wiring				
Х	Х		Х	Х		Х	Х	ELPT 2339*	Electrical Power Distribution				
Х	Х		Х	Х		Х	Х	ELPT 2355 or	Programmable Logic Controllers II				
									Practicum (or Field Experience) -				
Х	Х		Х	Х		Х	Х	EEIR 2366	Electrical/Electronics Equipment Installation and				
									Repairer, General				
Х			Х	Х		Х	Х	ELPT 2419*	Programmable Logic Controllers I				
Х	Х		Х	Х	Х	Х	Х	ELPT 2443*	Electrical Systems Design				
Х			Х	Х	Х	Х	Х	ELPT 2449	Industrial Automation				
Х	Х		Х	Х		Х		RBTC 1405*	Robotic Fundamentals				
				Х		Х		TECM 1303*	Technical Calculations				
							8.	BASIC USE OF COMPUTERS	5				
						7.	WO	RKPLACE COMPETENCIES					
					6.	6. PERSONAL QUALITIES							
		5. THINKING SKILLS											
	4. SPEAKING AND LISTENING												
	3. MATHEMATICS												
	2.	WR	ITIN	IG									
1.	1. READING												

Courses with an * are also listed in the certificate

General Education Matrix: The General Education Matrix is state-mandated. You will see the 6 requirements that the college is tasked with teaching and how they map back to the courses.

Pr	Program: Industrial Automation Systems					Automation Systems						
Av	varc	d: In	dust	trial	Aut	omation Systems	Credential: Associate in Applied Science (AAS) Degree					
As	soci	iate	in A	ppli	ied S	Science (AAS) Degree						
Ci	p: 1	5.03	03									
					LIS	F OF ALL COURSES REQUIR	ED AND IDENTIFIED CORE OBJECTIVES					
_	0	GEN	ERA	L								
E				COF	RE	Course Number	Course Title					
_		DJEC		E3	_	Course Number	course rite					
1	2	3	4	5	6							
х	х		х	х	х	LEAD 1100*	Workforce Development with Critical Thinking					
Х	Х	Х	Х		Х	ITNW 1325*	Fundamentals of Networking Technologies					
Х		Х	Х			ELPT 1411*	Basic Electrical Theory					
Х		Х	Х			HART 1401*	Basic Electricity for HVAC					
Х						ELMT 2433*	Industrial Electronics					
Х			Х			ELPT 1441*	Motor Control					
Х		Х	Х			ELPT 1457*	Industrial Wiring					
Х		Х				ELPT 2339*	Electrical Power Distribution					
Х	Х		Х	Х		ELPT 2355	Programmable Logic Controllers II					
						EEIR 2366	Practicum (or Field Experience) - Electrical/Electronics Equipment Installation and Repairer, General					
Х			Х			ELPT 2419*	Programmable Logic Controllers I					
Х	Х	Х			Х	ELPT 2443*	Electrical Systems Design					
Х	Х		Х		Х	ELPT 2449	Industrial Automation					
Х	Х		Х			RBTC 1405*	Robotic Fundamentals					
		Х				TECM 1303*	Technical Calculations					
					6.	Personal Responsibility						
				5.	Soc	ial Responsibility						
			4.	Теа	mw	ork						
		3.	Emp	oiric	al a	nd Quantitative Skills						
	2.	Con	nmı	inica	atio	n Skills						
1.	Crit	ical	Thir	nkin	g Sk	ills						

Courses with an * are also listed in the certificate

Program Outcomes Matrix: The Outcomes Matrix represents the Vernon College mandated requirements. They are the Program outcomes just approved and how they map back to the courses.

Program: Industrial Automation Systems					ial A	Automation Systems					
Av	Award: Industrial Automation Systems					tomation Systems	Cuedential: Associate in Annlied Science (AAS) Decree				
As	Associate in Applied Science (AAS) Degree						Credential: Associate in Applied Science (AAS) Degree				
Cir	o: 1º	5.03	03								
0.1						LIST OF ALL COUR	SES REQUIRED AND OUTCOMES				
	0	JTC	ом	ES		Course Number	Course Title				
1	2	3 4 5 6									
-	~		-	2	U						
						LEAD 1100*	Workforce Development with Critical Thinking				
Х					Х	ITNW 1325*	Fundamentals of Networking Technologies				
Х		Х	Х		Х	ELPT 1411*	Basic Electrical Theory				
Х	Х	Х		Х		HART 1401*	Basic Electricity for HVAC				
Х	Х	Х				CBFM 2317	Mechanical Maintenance				
Х		Х	Х		Х	ELMT 2433*	Industrial Electronics				
Х	Х	Х		Х		ELPT 1441*	Motor Control				
Х	Х	Х		Х		ELPT 1457*	Industrial Wiring				
	Х	Х		Х		ELPT 2339*	Electrical Power Distribution				
		Х	Х		Х	ELPT 2355	Programmable Logic Controllers II				
						EEID 2266	Practicum (or Field Experience) - Electrical/Electronics				
							Equipment Installation and Repairer, General				
Х	Х	Х	Х		Х	ELPT 2419*	Programmable Logic Controllers I				
Х	Х	Х		Х		ELPT 2443*	Electrical Systems Design				
Х		Х	Х		Х	ELPT 2449	Industrial Automation				
Х					Х	RBTC 1405 *	Robotic Fundamentals				
Х				х		TECM 1303*	Technical Calculations				
					6.	Design, program, integra	ite, and troubleshoot automation control devices such as PLC				
					(P	rogrammable Logic Contr	ollers), PID (Proportional Integral Derivative) Controllers, and				
				_	PA	C (Programmable Autom	ation Controllers).				
				5.	Calo	culate requirements of ele	ectrical systems utilized in commercial, industrial, and high				
					ltag	e distribution and transm	inssion applications.				
			4. COI	ntro	elor I sv	stems, including such as r	pressure, level, flow, and temperature control systems.				
		3.	Inte	erpro	et so	chematics and wiring diag	grams and recognize the sequence of operations occurring in				
		au	tom	nate	d el	ectrical systems.					
	2.	Inco	orpo	orate	e loo	cal, state, and federal safe	ety requirements and guidelines in the design of electrical				
	sy	sten	ns. A	Auto	oma	te different manufacture	processes.				
1.	Арр	oly b	asic	: AC	/DC	electrical and electronic	fundamentals to wire, integrate, and troubleshoot electrical				
	dev	ices	and	d sy	ster	ns. Devices used in indust	trial environments to increase the efficiency of production.				

Institutional Outcomes Matrix: The Institutional Outcomes Matrix represents the Vernon College mandated requirements. This matrix represents how the program outcomes map back to the institutional outcomes/general education outcomes.

Prog	ram: Ind	dustria	l Auton	nation S	ystems						
Awa Asso Degr	rd: Indus ciate in ee	strial A Applied	utomat d Scienc	ion Syste ce (AAS)	ems	Credential: Associate in Applied Science (AAS) Degree					
Cip.	13.0303					IRSES REQUIRED AND OUTCOMES					
		ОШТ	COMES								
				, 		General Education Outcomes					
1	2	3	4	5	6						
Х	Х	Х	Х	Х	Х	1. Critical Thinking Skills					
	Х	Х	Х	Х	Х	2. Communication Skills					
Х			Х			3. Empirical and Quantitative Skills					
Х			Х		Х	4. Teamwork					
	Х					5. Social Responsibility					
Х	Х	Х	Х	Х	Х	6. Personal Responsibility					
					6. Des contro (Propo (Progra	Design, program, integrate, and troubleshoot automation trol devices such as PLC (Programmable Logic Controllers), PID oportional Integral Derivative) Controllers, and PAC ogrammable Automation Controllers).					
				5. Calc indust	ulate re rial, and	quirements of electrical systems utilized in commercial, high voltage distribution and transmission applications.					
	4. Develop programs, calibrate devices, and tune PID parameters for various types of process control systems, including such as pressure, level, flow, and temperature control systems.										
	3. Interpret schematics and wiring diagrams and recognize the sequence of operations occurring in automated electrical systems.										
	2. Inco electri	orporat cal syst	e local, ems. A	state, a utomate	nd feder differer	ral safety requirements and guidelines in the design of nt manufacture processes.					
1. Ap	oply basi	c AC/D	C elect	rical and	electro	nic fundamentals to wire, integrate, and troubleshoot					
elect	rical dev	vices ar	nd syste	ems. Dev	vices use	d in industrial environments to increase the efficiency of					
prod	uction.										

Dakota Patterson opened the floor for discussion and recommendations. Hearing none, he asked the committee for a motion to approve the matrices as presented. Kyle Stewart made a motion to approve the matrices as presented. Kelly Easter seconded the motion.

The motion passed and the committee approved the matrices as presented.

Program statistics: Graduates (from previous year/semester), current majors, current enrollment

Program Statistics:

- Graduates 2020-2021: 6
- Enrollment Summer 2021: 9
- Majors Fall 2021-2022: 32
- Enrollment Fall 2021: 90

✤ Local Demand

Dakota Patterson asked the committee to discuss onboarding in the last year, current job openings, or openings in the near future. Is the program still viable and needed in the local workforce?

Kyle Stewart with Plains Pipeline said they have terminated two within the last year and they have no current openings due to economic downfall. If the person is willing to relocate then they have about 6-7 positions available.

Dakota Patterson stated that NexEra Energy has hired 2-3 locally, 20 this past year in his region, and in a 2-hour radius over 100 positions. There are 20-30 positions to fill for techs willing to relocate.

Ken Theimer with Evans Enterprises stated they have hired one locally out of the program and 3-4 across Texas in the last year in field service and a couple more in the shops. They will be looking at adding more field service techs shortly.

Gordon Drake stated that Oncor has hired 5-6 locally, and across the system, they need more hired. Willingness to relocate is a major factor in this industry because a lot of personnel transfer out.

Randy Brooks at Solvay stated they have not hired any locally but there are a few crew members on the verge of retiring. Regionally Solvay has hired two this year and has openings for those willing to relocate.

Kelly Easter stated that Vitro has lost all employees in the same position as herself. They need mechanics and electrical engineers.

Evaluation of facilities, equipment, and technology. Recommendation for the <u>acquisition of new equipment and technology</u>.

Dakota Patterson asked the committee if they had a chance to tour the facility if they have not done so, Dr. Mark Holcomb would be happy to show the lab facilities after the meeting.

Fanuc CRX -10i Collaborative Robot Software: Motoman Touch Software: Solidworks Electrical Software: FluidSims Software: RS Logic 500/5000 22-23 possible purchase requests Festo Bottling station YRC 1000 Motoman robot Motor Control Center Trainer Rockwell RS Logic software

Dakota Patterson opened the floor for discussion or recommendations for new equipment.

External learning experiences, employment, and placement opportunities

"Vernon College offers a job board on the website. Businesses can contact Chelsey Henry, Coordinator of Career Services, <u>chenry@vernoncollege.edu</u>, to add jobs or you can post yourself. VC also subscribes to a service called GradCast. Within this program, over 600,000 business and industry contacts are available to the graduates to send up to 100 free resumes within a set zip code. If you would like to have your business as part of that database, please contact Judy Ditmore, <u>jditmore@vernoncollege.edu</u>."

Placement Rate of Program Completers by Reporting Year [1]												
	2016-2017		2017-2018		2018-2019			3-Year Average				
Program	Plc	Cmp	%	Plc	Cmp	%	Plc	Cmp	%	Plc	Cmp	%
15030000-Electrical	14	14	100%	10	10	100%				24	24	100%
Engineering												
Technologies/Technicians												

Dakota Patterson opened the floor for discussion, hearing none he moved forward.

* <u>Professional development of faculty and recommendations</u>

Dakota Patterson asked the committee to take time to review the professional development opportunities that the faculty member has participated in or will participate in. Dr. Mark Holcomb reviewed the professional development list below.

Completed Doctorate of Education Universal Robot Level I training Siemens S7 – 1500 Basic Ladder Logic Programming Rockwell CCP182 Ethernet/IP Fundamentals

Dakota Patterson opened the floor for discussion or recommendations for professional development of the staff. Hearing none, Dakota moved forward.

Promotion and publicity (recruiting) about the program to the community and business and industry

Jr High Virtual Career Expo Archer City Career Fair Abilene WOW Youth Expo

Wichita Falls High School Expo in February High School Tours CTE Navigator

Serving students from special populations:

Dakota Patterson asked the committee to please note the federal definition of special populations below. Dr. Mark Holcomb was asked to discuss the services below for students who qualify. Dr. Holcomb reviewed the information below.

Vernon College is an open-enrollment college. The Proactive Assistance for Student Services (PASS) department offers many services for documented disabilities such as but not limited to quiet testing, longer testing times, interpreters, and special equipment.

Vernon College has a program titled "New Beginnings" for students who qualify to receive transportation, childcare, and/or textbook loans. Perkins funding is also offering assistance to break down barriers such as uniform, supply, equipment costs.

Peer to Peer mentoring, tutoring (online and in-person), resume building, student success series, and counseling are just a few of the other options/services available to students.

- 1. Special populations new definitions:
 - a. Individuals with disabilities;
 - b. Individuals from economically disadvantaged families, including low-income youth and adults;
 - c. Individuals preparing for nontraditional fields; 1 female/31 males
 - d. Single parents, including single pregnant women;
 - e. Out-of-workforce individuals;
 - f. English learners;
 - g. Homeless individuals described in section 725 of the McKinney-Vento Homeless Assistance Act (42 U.S.C. 11434a);
 - h. Youth who are in, or have aged out of, the foster care system; and
 - i. Youth with a parent who-
 - i. is a member of the armed forces (as such term is defined in section 101(a)(4) of title 10, United States Code);
 - ii. is on active duty (as such term is defined in section 101(d)(1) of such title).

Comprehensive Local Needs Assessment (Discussion led by Shana Drury):

-1											
Occupation	TWC	Share of local	Quality Index	Demand	Quality	National	Local	Projected	Projected		
	Target	jobs (%)	(-5 to 5)	Index	and	Median	Median	national	state-level		
	Occupation			(-5 to 5)	demand	Wage (\$)	Wage	growth 2019-	growth 2018-		
					quadrant		(\$)	2029 (%)	2028 (%)		
Electricians	Yes	0.392467598	-0.466621733	-0.154515575	Low	27.01	23.18	9.33155871	13.41463415		

-Labor Market Outlook

					Low demand				
Electronics	Yes	0.081142495	0.259703398	-0.45982003	High	31.4747	31.4747	0.273972603	0.273972603
Repairers					quality -	9151	9151		
					Low				
					demand				
Mechanical	Yes	0.174799926	2.468580844	0.122442437	High	42.51	42.51	4.009355162	3.389830508
Engineers					quality -				
					High				
					demand				

-Living Wage

Occupational Code	Occupation	Prevailing Hourly Wage	Prevailing Annual Wage
47-2111	Electricians	\$ 18.00	\$ 3 7,448.00
49-2094	Electrical and Electronics Repairers, Commercial and Industrial Equipment	N/D	N/D
17-2141	Mechanical Engineers	\$ 31.32	\$ 6 5,138.00

Dakota Patterson opened the floor for any further discussion. Hearing none he moved forward. Shana Drury thanked the committee for attending the meeting.

Dakota Patterson adjourned the meeting at 1:45 pm

Recorder Signature –	Date	Next Meeting: Fall 2022
that the	12-20-21	